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Reconstruction of controls in exponentially stable linear
systems subjected to small perturbations�
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Abstract

The problem of the dynamical reconstruction of the variable input of an exponentially stable linear system subjected to small
non-linear perturbations is considered. In the case of inaccurate observations of its phase trajectory, an algorithm for solving this
problem is given, based on the method of control with a model. The algorithm is stable to data interference and computation errors.
General constructions are illustrated by an example in which the problem of reconstructing the input of an oscillatory section is
discussed.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction. Formulation of the problem

We will consider a controlled system described by the differential equation

(1.1)

where C is an (n × q)-dimensional matrix, f is an (n × n)-dimensional matrix function satisfying the Lipschitz condition

and |x| is the Euclidean norm of the vector x. The trajectory of the system

depends on the time-variable input action (control) u = u(t). Neither this control nor the trajectory is specified in advance.
During motion, some signal characterizing the phase state of the system is observed. A part of the coordinates of system
(1.1) – the coordinates y2(�i) – is measured with an error at discrete, fairly frequent instants of time τi ∈ T (i = 1, 2,
. . .). The results of the measurements – the vectors �hi ∈Rn−n1 – are such that
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Here vhi ∈ (0, 1) is the measurement error at the time �i, and the number h ∈ (0.1) characterizes the accuracy of the
measurement.

The problem discussed in this paper is as follows. Along with the controlled system (1.1), there is one other
dynamical system, which we will call the reference system, that is subjected to an uncontrolled input action v. The
trajectory of this system, and also the input action, are unknown a priori. However, it is possible at instants of time
�i to calculate (with an error) all the coordinates of the reference system (or part of them). It is required to construct
a law of the formation of the control u, based in the feedback principle, that ensures closeness of the trajectories of
the available systems. Here, the control u, formed when developing the process, must approximate, in the root mean
square to the unknown input action v of the reference system.

Suppose the reference motion is described by the system

(1.2)

It is assumed that both the function v(t) (the input action) and the solution x(t) = x(t; x0; v(·)) of this system are also
unknown. All that is known in that the function v(t) is constrained:

(1.3)

where Q ∈ Rq is a specified convex, bound and closed set. At instants of time �i (i ≥ 1), the state is measured (with an
error):

The results of measurements – the vectors �hi ∈Rn−n1 – satisfy the inequalities

(1.4)

It is required to develop an algorithm of the formation, according to the feedback principle, of the control u =
uh(τi, ξhi , ψ

h
i ), t ∈ [τi, τi+1), in system (1.1) such that, first, the trajectory of system (1.1) that corresponds to this

control (yh(·) = y(·; y0, u
h(·)) is retained at all t ∈ T in a certain fairly close vicinity of the solution of reference system

(1.2), i.e.

(1.5)

and, second, the control u = uh(·) approximates, in the root-mean-square, the unknown input v(·) i any finite time
interval, i.e.

(1.6)

These are the essentials of the problem being considered in this paper.
The problem belongs to the class of inverse problems of the dynamical estimation of unknown characteristics

from the results of measurements. (Problems of this kind were investigated, for example, in Refs 1–4. In particular, it
can be solved using dynamical inversion theory5–10 (here, only monographs and review papers in which appropriate
references can be found are mentioned). We will bear in mind the fact that the algorithms proposed in these papers for
solving corresponding problems of reconstruction are oriented towards a finite functioning time interval of the system
T = [0, v], v < +∞. Note also that, as v increases, when implementing the algorithms described,5–10 “accumulation”
of computation and measurement errors occurs. As v increases the rates of convergence of the algorithms deteriorate.
Thus, the quality of the algorithms, generally speaking, depends on the length of the time interval for which the system
is functioning. Below, an algorithm for solving the problem will be given that is “independent” of the length of this
interval. We will consider the case where the matrix A is exponentially stable, while the non-linear part f of system
(1.1) comprises a perturbation that is suitably consistent with A. The algorithm is based on ideas set out in earlier
studies.5,6,10,11
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2. Auxiliary constructions

Before describing of the reconstruction algorithm, we will develop some necessary auxiliary constructions. Below,
we will assume that

Suppose the following condition is satisfied.

Condition 1. Matrix A is stable.

We will fix some symmetrical positive–definite (n × n)-dimensional matrix Q. As is well known, a unique (n × n)-
dimensional positive-definite symmetrical matrix D there exists such that the Lyapunov function V(x) = x′Dx satisfies
the equation

(2.1)

(the prime denotes transposition). Note also that it is not difficult to specify a number c > 0, for which the following
inequality is satisfied

(2.2)

We will fix the family of subdivisions of interval T

(2.3)

Let XT(·) be a bundle of solutions of system (1.2), i.e.

We will assume that the bundle XT(·) is bounded, i.e. all the solutions of system (1.2) x = x(t) remain in some bounded
region HX of phase space Rn:

(2.4)

Let z(t) = yh(t) − x(t), where x(t) is the solution of system (1.2) and yh(t) is the solution of system (1.1), corresponding
to the control

Then, the function z(t) satisfies the vector equation

(2.5)

with the initial condition z(0).
The symbol V̇ = (t)|(2.5) will denote the derivative of the Lyapunov function V(x) = x′Dx, calculated by virtue of

system (2.5). Thus

Lemma 1. Suppose Condition 1 is satisfied, and also the inequality c > 2L|D|. Then the following inequality holds:

Here and below, the norm of the matrix means its Euclidean norm.
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Proof. Using relations (2.1) and (2.2), we will have

(2.6)

Further, since the Lipschitz condition is satisfied for the function f, the following inequality will hold:

(2.7)

From relations (2.6) and (2.7) we obtain the estimate

from which the assertion of the lemma follows. �

3. An algorithm for the solution. The case when all the coordinates are measured

We will write an algorithm for solving the problem being considered, to beginning with the case when all the
coordinates are measured. We fix the function

(regularizer) and the family of subdivisions�h (2.3). We select the latter in such a way that the following condition is
satisfied.

Condition 2. The family �h and the errors of measurements νhi are such that we have the following relations

Remark. Condition 2 is satisfied, for example, if

Here

Inequalities (1.4) take the form

Before the start of the operation of the algorithm, we fix the value of h, the family {νhi }
∞
i=0, the quantity � = �(h)

and the subdivisionΔh = {τh,i}∞i=0. We divide the operation of the algorithm into steps of the same type. Suppose that,
during the i-th step, carried out in the time interval �i = [τi,τi+1), τi = τh,i, the following operations are carried out. First,
at time τi, the vector uhi is calculated by means of the formula

(3.1)

Then, the following control is fed to the input of system (1.1) at all t ∈ �i

(3.2)
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As a result, under the action of this control and some unknown perturbation v(t), t ∈ δi, system (1.1) transfers from
the state yh(τi) to the state yh(τi + 1), while reference system (1.2) transfers from the state x(τi) to the state x(τi + 1).
At the next, (i + 1)-th step, similar actions are repeated.

The symbol C+ denotes a pseudoinverse matrix.

Theorem 1. Let α(h) → 0, (ψ2(h) + ϕ(h))α−1(h) → 0 at h → 0 and v∗(t) = C+(ẋ(t) − Ax(t) − f (x(t))), and
Conditions 1 and 2 be satisfied, as well as the inequality c > 2L|D|. Then, whatever the number v∈ T , the following
convergence occurs

The theorem is proved in the same way as indicated earlier10 and is based on Lemma 2 given below.
Note that the method proposed by Kryazhimskii and Osipov10 and developed subsequently5–9 is based on the idea

of stabilizing suitable Lyapunov-type functionals by an extremal shear. Thus, the method combines the stabilization
principle with the external shift rule. In the case being considered, a regularized extremal shear is defined by relation
(3.1).

Lemma 2. Suppose the conditions of Theorem 1 are satisfied. Then the following inequalities hold:

(3.3)

The constants C1 and C2 are in dependent of x(·), yh(·) and i.

Proof. The proof of the lemma is based on the procedure of stabilizing the Lyapunov-type functional

(3.4)

Using Lemma 1, we conclude that

By virtue of including expressions (2.4) evenly for all x(·) ∈ XT(·) and yh(·)

where the constant b1 is independent of x(·), yh(·), t and i. In such a case

Taking into account the rule for determining the control uh(·) (see relations (3.1) and (3.2)), we obtain

Thus the following inequality holds
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from which, by virtue of Condition 2, we obtain the inequality

The of lemma is proved. �

Proof of Theorem 1. We will show that, for an arbitrary sequence hj → 0+ as j → ∞, for any number v∈ T , for any
family {Δhj } of subdivisions of the interval T with diameters �(hj), such that

and for any measurements of �hji and �hji (|ξhji − y(τi)| ≤ νhji , |�hji − x(τi)| ≤ νhji ), the following convergence occurs

(3.5)

Here and below, L2 = L2(T*;Rq), T∗ = [0, v] and the controls uhj (·) are defined by the rule (3.1), (3.2).
Assuming the opposite, we conclude that a sub-sequence of the sequence uhj (·) will be found (we will denote it,

for simplicity, by the same notation uhj (·)) such that

(3.6)

In such a case, choosing if necessary, a sub-sequence again from hj, we assume

where yhj (·) = y(·; y0, u
hj (·)) and y*(·) is the solution of the equation

By virtue of Lemma 2 (see the first inequality of system (3.3)) we have

This means that u0(·) ∈Uv(x(·)) and consequently

(3.7)

The notation Uv(x(·)) denotes the set of all functions compatible with the output x(t), t ∈ [0, v], i.e.

Furthermore, by virtue of the known properties of the weak limit, from relation (3.6) we have the inequality

(3.8)

In turn, from Lemma 2 (see the second inequality of system (3.3)) we likewise have the inequality

(3.9)

by virtue of which we have
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i.e. (see inequalities (3.7) and (3.8))

(3.10)

Since the set Uv(x(·)) contains a unique element of the minimal L2-norm (namely v∗(·; x(·))), from inequalities (3.10)
we obtain

(3.11)

Using relations (3.6) and (3.11), we conclude that

(3.12)

The convergence (3.12) contradicts relation (3.6) and the assumption u0(·) 	= v∗(·; x(·)).
The theorem is proved. �
Remarks. 1◦. Suppose system (1.1) is non-linear in the phase variable, i.e. Ax = A(x), where A:Rn → Rn is a non-linear

Lipschitz function. Likewise, suppose a function V:Rn → R exists with the following properties:

(a) it is possible to specify the constant c > 0 such that

(b) V (z) ≥ w(|z|), ∀z∈Rn, where w : R → R is a continuous function with the properties: w(0) = 0, w(r) > 0 when
r 	= 0. In this case, Theorem 1 will remain true if the vectors uhi are calculated by means of the formula

2◦. As can be seen from the Lemma 2 proof, by selecting the control u = uh(t) according to formulae (3.1) and
(3.2), we ensure a “small” increase in the Lyapunovs functional �(t). In turn, the proof of Theorem 1 implies that the
functional �(t) is chosen such that, from the smallness of its values, the “closeness” of uh(·) to v∗(·) follows.

4. A solution algorithm. The case when some of the coordinates are measured

We will now consider the case when some of the coordinates are measured. Suppose that n > q and the matrix C has
the following structure: C = [O,C1], where O is an n1 × q null matrix and C1 is an (n − n1) × q matrix. Then, system
(1.1) can be written in the form (�2j is the Kronecker delta, j = 1, 2 in all cases below)

(4.1)

In turn, reference system (1.2) will take the form

(4.2)

As above, we consider the functions fj to be Lipschitz functions with Lipschitz constants Lj respectively, i.e.

Suppose the following condition is satisfied.

Condition 3. Matrices A1 and A4 are stable.
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We fix symmetric positive definite matrices D1 and D2 of dimensions (n1 × n1) and (n − n1) × (n − n1) respectively.
Uniquely defined symmetrical positive definite matrices Q1 and Q2 correspond to these matrices such that

(4.3)

(4.4)

where the Lyapunov functions Vj are such that Vj = x′
jDjxj . Let

(4.5)

We will introduce the notation

where z(t) = x(t) − yh(t), x(t) = x(t; x0, υ(·)) = (x1(t), x2(t)) is the solution of system (4.2) and yh(t) =
y(t; y0, u(·)) = (yh1 (t), yh2 (t)) is the solution of system (4.1), which corresponds to the control u = uh(·) ∈Q(·). As
above, we will assume that the bundle of solutions of systems (1.2) ((4.2)) is bounded, i.e. relation (2.4) holds.

We will introduce the following condition.

Condition 4. The following inequalities hold

(4.6)

Lemma 3. Suppose Conditions 3 and 4 are satisfied. Then the following inequality holds

Proof. Using relations (4.3) and (4.5) when j = 1, we will have

(4.7)

Further, by virtue of the Lipschitz nature of the function f1, the following inequality holds

(4.8)

From inequalities (4.7) and (4.8) we obtain the estimate

(4.9)

Similarly, we derive

(4.10)

The assertion of the lemma follows from relations (4.9) and (4.10) and Condition 4.
We will now describe the algorithm for solving the problem in the case when y2(τi) and also x2(τi) are measured.

Suppose the function α = α(h) : (0, 1) → R+ and the family of subdivisions �h (2.3) have been selected. Before the
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algorithm starts to operate, we fix the value of h, the family {νhi }
∞
i=0, the subdivision Δh = {τh,i}∞i=0 and the quantity

� = �(h).
We will divide the operation of the algorithm into steps of the same type. In the course of the i-th step, performed

in the time interval �i = [�i,�i+1), �i = �h,i, the following operations are carried out. First, at time �i, the vector uhi is
calculated by means of the formula

(4.11)

where

Then, to the input of system (4.1), at all t ∈ �i, the following control is applied

(4.12)

As a result, under the action of this control and some unknown perturbation u(t), t ∈ �i, system (4.1) transfers from the
state yh(�i) to the state yh(�i+1), and the reference system (4.2) transfers from the state x(�i) to the state x(�i+1). At the
next, (i + 1)-th step, similar actions are repeated. �

Theorem 2. Suppose

and Conditions 2 to 4 are satisfied. Then, whatever the number v∈ T , the following convergence occurs

The proof is similar to the proof of Theorem 1. It is based on the procedure for stabilizing the Lyapunov-type
functional which differs from functional (3.4) in that V(z(t)) is replaced by V1(z1(t)) + V2(z2(t)).

5. Example

As a model example illustrating the algorithm given above, we will consider an oscillatory section described by the
equation

(5.1)

Assuming that y1 = w and y2 = ẇ, we will change to the system

Considering that

from Eq. (2.1) we find the matrix
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Fig. 1.

System (1.2) was adopted as the reference motion, i.e., in this case

with the initial state

The elements �hi =
{

�h1i, �h2i

}
∈R2 were calculated by means of the formulae

The control u(t) in system (5.1) was found from formula (3.1), i.e.

It was assumed that

Figure 1 shows the evolution of the controls v(t) and uh(t) when � = 0.5.
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